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Traces of perishable architecture
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Faint topography changes
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Remains obscured by vegetation
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Aerial LiDAR
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Aerial LiDAR: Canopy penetration
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Aerial LiDAR: Dense 3D point cloud

7



Aerial LiDAR: Stripping vegetation points
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Modality: Satellite
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Modality: LiDAR terrain model
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Modality: LiDAR-guided feature polygons
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Cambodia. Angkor campaign, 2012-2020: satellite
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Cambodia. Angkor campaign, 2012-2020: before

13



Cambodia. Angkor campaign, 2012-2020: after
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archaeoscape.ai axes

Acquire data Interpret & Analyse Aggregate & share
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Acquiring data



Region of interest

Previously
I Focus: Khmer heartlands
I Laos foray with CHAMPA
I ∼ 6500 km2 over 12 years

archaeoscape.ai
I Focus: rainforest civilisations
I Sukhothai: Siamese & Khmer
I East Java: a longer shot
I ∼ 900 km2 in 2024
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Phases of the LiDAR campaign

I. Aerial acquisition

I Scoping: parameters designation, surveys
I Flight ops: acquire points, photos

II. Point cloud analysis
I Points processing: de-noise, classify
I Producing 2D imagery (DTM & derived)

I Feature interpretation and delimitation

III. Archaeological follow-up
I Local authority engagement, collaboration
I Field verification and mapping
I Synthesis & dissemination 17



Cambodia 2024: 12 locations, UAV
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Thailand 2024: Sukhothai Historical Park, plane
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Indonesia 2024: East Java, plane
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Data analysis and interpretation



Archaeological mapping

Figure 1: LiDAR-derived topography, Vat Phou, Laos
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Archaeological mapping: manual

Figure 2: Preliminary mapping in QGIS, Vat Phou, Laos
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Archaeological mapping: ML for feature identification

Ground truth ML model prediction

Figure 3: DeepLabv3 baseline predictions in Angkor, Cambodia
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ML applications: river network delineation
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ML applications: looting hole identification

Figure 4: Looted sites in Sambor Prei Kuk, Cambodia

25



The long tail of archaeology adjacent applications

Biodiversity

I Plant identification
I Biomass estimation1

Social

I Land use analysis
I Flood risk maps2

1Lidar detection of individual tree size in tropical forests. Ferraz et al.
2https://www.esa.int/ESA_Multimedia/Images/2006/05/Flood_risk_map_of_Badger
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Aggregation and dissemination



Coverage: 7500 km2 over 12 years

country years campaign ∼km2

Cambodia 2012-2015 KALC 400

Cambodia 2015-2020 CALI 2000

Thailand 2016-2017 Phanom Rung 200

Laos 2020-2025 CHAMPA 4000

Cambodia 2020-2024 archaeoscape.ai 60

Thailand 2024 archaeoscape.ai 600

Indonesia 2024 archaeoscape.ai 220

Table 1: EFEO’s LiDAR campaigns in Southeast Asia.
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Coverage: 7500 km2 at a glance
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Figure 5: Total area coverage of the campaigns.
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Coverage: challenges

Proper data consolidation
I Interpretation requires archaeological context
I Field data, historical maps, surveys, inventory
I Temporal aspect: environment evolves (and erodes)

Integration is complicated
I Heritage management rests with local stakeholders.
I Important: data sovereignty and safety.
I Open data not yet embraced in archaeology.

No such thing as free storage
I Data get lost, corrupted!
I CC0 license not always applicable
I Terrabytes of data - difficult 29



WebGIS platform. Open source, restricted data.

Why?
I Integration of multiple modalities

• Different imagery types, historical maps
• Inventory and location of existing sites

I Access to the latest data in the field
I Responsible collaboration across researcher groups

Figure 6: Web platform under development 30
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ML dataset: No geo-referencing required!
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Archaeology to the Deep Learning Era
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Abstract

Airborne Laser Scanning (ALS) technology has transformed modern archaeology
by unveiling hidden landscapes beneath dense vegetation. However, the lack
of expert-annotated, open-access resources has hindered the analysis of ALS
data using advanced deep learning techniques. We address this limitation with
Archaeoscape (available at https://archaeoscape.ai), a novel large-scale
archaeological ALS dataset spanning 888 km2 in Cambodia with 31,141 annotated
archaeological features from the Angkorian period. Archaeoscape is over four
times larger than comparable datasets, and the first ALS archaeology resource with
open-access data, annotations, and models.
We benchmark several recent segmentation models to demonstrate the benefits of
modern vision techniques for this problem and highlight the unique challenges
of discovering subtle human-made structures under dense jungle canopies. By
making Archaeoscape available in open access, we hope to bridge the gap between
traditional archaeology and modern computer vision methods.

1 Introduction

Airborne Laser Scanning (ALS) has been celebrated as a “geospatial revolution” in modern archaeol-
ogy due to its ability to penetrate vegetation and unveil traces of human activities that may otherwise
be concealed or invisible [1, 2]. Extensive acquisition campaigns conducted in Southeast Asia [3],
Central America [4], and Europe [5, 6] have led to a reevaluation of the historical impact of humans
on “natural” landscapes, especially in tropical regions [7]. However, finding archaeological features
in vast volumes of ALS data presents a significant challenge. Manual analysis is time-consuming and
requires advanced expert knowledge of the studied civilization as well as on-site validation [8].

The emergence of deep learning offers a promising tool to assist researchers in identifying archaeo-
logical patterns, simplifying the exploration of these extensive acquisitions. Yet, the development of
specialized models is hampered by the lack of expert-annotated datasets. In response, we introduce
Archaeoscape, the largest open-access ALS dataset for archaeological research published to date.
Spanning 888 km2, it comprises 31,411 annotated instances of anthropogenic features of archaeologi-
cal interest. The dataset includes orthophotos and LiDAR-derived normalized Digital Terrain Models

∗Equal contribution. †Posthumous authorship.

38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets and Benchmarks.
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ML dataset for LiDAR archaeology



Dataset: quick overview

3D point cloud Terrain model Annotations

Mound Hydrology Temple Background

What it is
I Largest open-access ML dataset for LiDAR archaeology
I 888 km2 with 31,141 mapped features
I Focused on Khmer civilization
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Time and place

Khmer civilisation
I 6th to 15th centuries
I Longstanding urban tradition
I Cambodia, Laos and Thailand

Large-scale features
I Temple complexes
I Hydraulics! (reservoirs, canals)

Hidden traces
I Perishable structures
I Earthen features are eroded
I Difficult to see on the ground
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Mapping Angkor

• Timeline: from 2015 to now
• Builds on pre-lidar mapping
methodology by Pottier (1999)
and Evans (2007)

• Typology: temple sites,
earthen features, and water
features
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Annotation process

• Very high feature density,
complex archaeological
landscapes

• Each feature manually traced
in ArcGIS/QGIS

• Products: DTMs, hillshades,
SLRMs and orthophotos

35



Ground verification
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Ground verification
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Ground verification
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Main classes
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(a) Occupation mound (b) Pond bank (c) Collapsed temple 37



Whole dataset at a glance
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Figure 8: Archaeoscape ML benchmark
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Comparison to existing

open-
access

hi-res
RGB

location
extent
in km2

resolution
in meters

number of
instances

Arran1 4 7 United Kingdom 25 0.5 772
Litchfield2 7 7 USA 50 1 1,866
Puuc3 7 7 Mexico 23 0.5 1,966
AHN4 7 7 Netherlands 81 0.5 3,553
AHN-25 7 7 Netherlands 437 0.5 3,849
Connecticut6 7 7 USA 353 1 3,881
Dartmoor7 7 7 United Kingdom 12 0.5 4,726
Pennsylvania8 4 7 USA 4 1 4,376
Uaxactun9 7 7 Guatemala 160 1 5,080
Chactún10 7 7 Mexico 230 0.5 10,894

Archaeoscape (ours) 4 4 Cambodia 888 0.5 31,411
1https://github.com/ickramer/Arran 2 Suh et al. 2021 3 Zhang, Ringle, and Willis 2024 4 Verschoof-van der Vaart et

al. 2020 5 Fiorucci et al. 2022 6 Vaart et al. 2023 7Gallwey et al. 2019 8 Carter, Blackadar, and Conner 2021 9Bundzel

et al. 2020 10 Somrak, Džeroski, and Kokalj 2020
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Comparison to existing

open-
access

hi-res
RGB

location
extent
in km2

resolution
in meters

number of
instances

Arran 4 7 United Kingdom 25 0.5 772
Connecticut 7 7 USA 353 1 3,881
Dartmoor 7 7 United Kingdom 12 0.5 4,726
Pennsylvania 4 7 USA 4 1 4,376
Uaxactun 7 7 Guatemala 160 1 5,080
Chactún 7 7 Mexico 230 0.5 10,894

Archaeoscape (ours) 4 4 Cambodia 888 0.5 31,411

Our Archaeoscape dataset
I Inputs: 50cm DTM, orthophotos
I Target: Semantic segmentation (Mound, Water, Temple, BG)
I 4X area, 6X annotations than comparable
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Benchmark results

Backbone
pre-
training

input
size

IoU
OA

avg temple hydro mound bkg

CN
N U-Neta ImageNet1K 224 50.5 33.3 32.7 48.6 87.6 88.2

DeepLabv3b ImageNet1K 224 47.6 19.8 35.9 47.5 87.2 87.8

Vi
T

ViT-Sc ImageNet21K 224 46.4 18.5 33.3 46.6 87.0 87.5
ViT-Sc DINOv2 224 41.9 14.5 26.1 40.9 86.2 86.7
ViT-Bd CLIP 224 30.3 3.4 15.8 30.3 83.1 83.4
ViT-Bd LAION2B 224 32.4 2.8 14.4 28.2 84.3 84.6
ViT-Le ScaleMAE 224 30.4 0.0 16.0 22.8 82.7 82.8
HybViT-Sc ImageNet21K 224 49.5 28.8 34.0 47.9 87.5 88.1

HV
iT

SWIN-Sc ImageNet21K 224 51.0 30.9 35.0 50.5 87.7 88.3
PCPVT-Sc ImageNet1K 224 51.7 33.4 35.0 50.6 88.0 88.5
PVTv2-b1c ImageNet1K 224 52.1 32.3 36.4 51.4 88.2 88.7
U-Neta ImagineNet1K 512 52.8 31.8 39.7 50.7 89.1 89.6
PVTv2c ImagineNet1K 512 52.2 28.3 38.0 53.0 89.4 89.9
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Benchmark results
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ImageNet Foundation Vision Foundation EO

• Foundation models do not generalize
• Hierarchical models perform best
• Key is large context/receptive field
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Qualitative results

Input ALS Ground truth U-Net-224 PVTv2-224
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Modalities

Backbone
pre-
training

IoU OA

avg temple hydro mound bkg

RG
B+
E U-Net ImageNet1K 50.5 33.3 32.7 48.6 87.6 88.2

ViT-S DINOv2 41.9 14.5 26.1 40.9 86.2 86.7
PVTv2-b1 ImageNet1K 52.1 32.3 36.4 51.4 88.2 88.7

RG
B U-Net ImageNet1K 51.2 28.8 37.8 49.8 88.3 88.9

ViT-S DINOv2 36.6 10.4 19.4 31.5 85.2 85.6
PVTv2-b1 ImageNet1K 49.9 27.8 35.1 48.5 88.0 88.5

E

U-Net ImageNet1K 34.2 1.5 22.7 29.3 83.2 83.2
ViT-S DINOv2 29.0 1.6 12.6 20.1 81.6 81.4
PVTv2-b1 ImageNet1K 33.9 6.0 20.6 27.0 82.0 33.9
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Modalities (Qualitative)

RGB nDTM GT PVTv2
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Thank you!

Visit our website at
archaeoscape.ai
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